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Executive Summary 

The Upper Neuse River Basin Association (UNRBA) has asked Cardno ENTRIX to assist in developing a 
monitoring program aimed at re-examining the Falls Lake Nutrient Management Strategy under the 
adaptive management provisions of the Falls Lake Rules. Among other monitoring objectives, this 
program will include routine monitoring at tributary sites identified as important for quantifying loading of 
nutrients to Falls Lake (henceforth, “lake loading sites”) as well as at jurisdictional boundaries in order to 
aid UNRBA members in calculations of annual jurisdictional loads. 

This technical memorandum (TM) describes the statistical approach used to develop recommendations 
for sampling frequency for the first year of monitoring at lake loading and jurisdictional boundary locations; 
additional components of the monitoring plan will be discussed in the forthcoming UNRBA Monitoring 
Plan TM. In addition to the statistical approaches described in this memo, the monitoring 
recommendations were guided by budget considerations and feedback from UNRBA member 
organizations. Cost estimates provided in this memo are preliminary figures for discussion and 
comparison purposes and could likely be altered by many factors. These costs will be provided within the 
context of the other proposed monitoring studies in the UNRBA Monitoring Plan TM. 

The basic premise behind the statistical approach presented in this TM is that, all else being equal, a site 
which is less-well estimated by statistical models should be sampled more frequently than a site which is 
well estimated. To assess the relative ability of models to estimate water quality at individual sites, two 
statistical models were developed.  Model One uses an approach based on available site-specific 
historical nutrient data along with data on covariates (additional related parameters).  Model Two uses a 
spatial modeling approach which uses the historic dataset, but does not depend on the availability of site-
specific nutrient data for simulating data for a given site; this model is useful for assessing how well 
models may estimate water quality at previously un-monitored locations.  This TM uses these models in 
conjunction with flow estimation methods presented in a previous TM to explore an approach for 
determining monitoring frequency based the magnitude of estimated loads and a desired level of 
confidence in these estimates. 

The results of the two water quality models were used to inform sampling plans which focus effort at 
locations that benefit most from increased sampling frequency. The models show that roughly weekly 
sampling for 5 years for TP (n=260) and twice monthly for TN (n=120) would yield about 90% confidence 
in the ability to predict mean nutrient concentrations within ± 10%. Sampling TSS weekly would achieve 
with 90% confidence that the mean could be estimated within 10 to 20%. This level of sampling, if applied 
at all sites, is likely to be cost-prohibitive given the UNRBA’s projected budget. This document shows that 
the Flat River, Eno River, Little River, Ellerbe Creek, and Knap of Reeds Creek are estimated to provide 
the largest contribution of nutrients (approximately 75-80% of the total load) to Falls Lake. Sampling these 
locations at a weekly frequency would allow much of the load to be estimated with a relatively high degree 
of confidence. Sampling frequencies may be reduced further (e.g. to every-other week) if historical data 
(data collected before the start of the present UNRBA monitoring program) are used to support future 
model development. Sampling the remaining lake loading sites less frequently (monthly in the first year) 
would yield less-confidence in estimates, but the reduced confidence over smaller portions of the total 
load is a recommended cost-saving tradeoff.  Sampling at sites determined to provide the smallest portion 
of the load may be able to be reduced even further in subsequent years, following a year of data 
collection to verify model output. 

The approach is also applied to jurisdictional boundary sites and sites are ranked according to their 
expected loads.  At least initially, however, UNRBA members have indicated that desired confidence in 
load estimates is independent from expected magnitude of those loads; that is, loading at all jurisdictional 
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sites should be estimated with the same anticipated degree of confidence regardless of how large the 
jurisdiction’s load is expected to be.  Therefore, a uniform monitoring program is recommended with a 
frequency between monthly and bi-monthly, with the choice of frequency to be revisited by the UNRBA 
annually. 

The statistical models described in this TM were developed with the specific goal of exploring questions 
related to sampling frequency. In general, all models are developed with specific objectives in mind and 
caution needs to be exercised in applying models outside of this predefined scope. The models described 
in this TM were not specifically designed for making water-quality predictions to be used in specification of 
boundary conditions for future lake response models, although future revisions and refinements may be 
able to build upon their framework for this purpose. Refined versions of these models, along with other 
methods such as USGS’s LOADEST model, would provide the UNRBA with the flexibility of multiple 
statistical methods to predict and verify daily water quality concentrations at Falls Lake loading sites. 
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1 Introduction and Project Background 

In 2010, the Environmental Management Commission (EMC) passed the Falls Lake Nutrient 
Management Strategy, requiring two stages of nutrient reductions (N.C. Rules Review Commission 
2010). The method used by the NC Division of Water Quality (DWQ)—now the Division of Water 
Resources (DWR)—for setting nutrient loading targets in the Falls Lake Nutrient Management Strategy is 
the Falls Lake Nutrient Response Model, which was developed with the Environmental Fluid Dynamics 
Code (EFDC) model (NCDENR 2009). In 2011, the Upper Neuse River Basin Association (UNRBA) 
began a project to re-examine the Falls Lake Nutrient Management Strategy under the adaptive 
management provisions of the Falls Lake Rules. 

Cardno ENTRIX is assisting the UNRBA in developing a monitoring plan that supports the re-examination 
process. The UNRBA Monitoring Program must cost-effectively support multiple UNRBA objectives. Six 
objectives were identified in Task 4: Review of Existing Models and Recommendations for Future Studies 
(Cardno ENTRIX 2013) and the Path Forward Committee of the UNRBA prioritized three of these 
objectives to be the focus of the monitoring program:  

1. Lake response modeling, 

2. Support of regulatory options,  

3. Source allocation and estimation of jurisdictional loading. 

Monitoring in support of regulatory options will be discussed in the forthcoming UNRBA Monitoring Plan 
TM and is not explicitly discussed in this TM.  

Monitoring in relation to lake response modeling includes several sub-objectives.   First, loading of water 
quality constituents (e.g. nutrients, carbon, chlorophyll, and sediments) is an important driver of the Falls 
Lake Nutrient Response Model. Because loading targets for the watershed were set, at least in part, 
based upon this model, understanding loading and how loading relates to water quality parameters of 
concern within Falls Lake is an important UNRBA objective. This objective may be partially met through 
routine monitoring of tributary loads. Second, any revisions to the Nutrient Response model will need to 
be calibrated to observed data within Falls Lake; therefore, another objective of monitoring in relation to 
the lake response modeling is to assure that adequate in-lake data are collected, by UNRBA and/or 
DWR, to allow for model calibration. This data should provide a long-term record of important modeling 
targets (e.g. chlorophyll, temperature, dissolved oxygen) along with estimates of expected spatial and 
temporal variation so that calibration targets can be adequately characterized. Finally, the calibration of 
the lake response model requires input of many parameters describing in-lake transformations and 
various physical, chemical, and biological processes.  Some additional sampling may help narrow the 
range of appropriate values of a few influential parameters.  

With respect to lake response modeling, the current TM focuses on the periodic monitoring related to 
loading of water quality constituents to Falls Lake and focuses on how sample size (number of 
observations) relates to confidence in the ability to characterize water quality on days for which 
measurements are not made.  These analyses guide recommendations to allocate effort to sites which 
contribute the largest portion of nutrients to Falls Lake. Special studies and short-term projects related to 
lake response modeling will be presented in the UNRBA Monitoring Plan TM. 

Finally, some monitoring of jurisdictional loads has also been identified by the UNRBA due to the 
requirement in the Falls Lake Rules that jurisdictions calculate baseline jurisdictional loading. Acceptable 
methods to determine jurisdictional loads, however, have not been provided by the State. The collection 
of some routine data at 21 locations within the Falls Lake watershed can help guide jurisdictions in the 
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development of methods to calculate these loads. With regard to jurisdictional loading, this TM will 
discuss the relationship between sample size (number of observations) and the precision with which 
models presented here can estimate mean loads in order to guide the UNRBA in selecting monitoring 
frequencies to meet their needs.  

Altogether, this technical memorandum (TM) discusses how statistical models developed from existing 
water quality data can address important questions regarding the design of the monitoring program and 
guide the frequency of sample collection related to the long-term monitoring requirements of the UNRBA’s 
three monitoring objectives. 

Section 2 presents the impetus for statistical analysis in relation to determining sampling frequency. 

Section 3 presents models which were developed to inform sampling frequency, including model 
equations, covariates, and model fitting methods. 

Section 4 presents results of the models and model fit statistics. 

Section 5 demonstrates how model output was used to categorize sites according to level of monitoring 
effort recommended 

Finally, Section 6 presents recommendations for relative sampling frequencies for all tributary monitoring 
locations.  These recommendations are based on model output, budget constraints, and feedback from 
UNRBA member organizations.  These are intended to be a guide for allocating relative effort among 
stations and may be adjusted according to changing needs and priorities of the UNRBA. 
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2 Statistical Model Support of Monitoring Program 
Design 

The most accurate—but most expensive—way to estimate daily water quality is to measure it directly.  
Indeed, two of the three UNRBA monitoring objectives (lake response modeling and estimation of 
jurisdictional loading) would ideally be supported by continuous measurement of flow and daily (or even 
more frequent) sampling of relevant water quality parameters. Unfortunately, this level of monitoring is not 
financially feasible and the technology for continually measuring all parameters in-situ is still under 
development. Collecting relevant data at just the lake loading sites on a daily basis would likely cost over 
$4 million annually. Sampling the same locations on a weekly basis is estimated to cost over $700,000 
per year and would limit the UNRBA’s ability to obtain the complete dataset needed to meet other 
monitoring program goals.  

Because of the significant expense of routine monitoring, it is important to keep project goals in mind 
when determining monitoring frequency and to identify the frequencies that balance project goals with the 
available budget. One set of tools that can help negotiate that balance are statistical models. These tools, 
when paired with historical data, can be used to quantify the tradeoffs between reduced sampling 
frequency and the resulting certainty with which water quality can be characterized. This allows a better 
understanding of the gains that additional dollars spent on monitoring can provide. 

As identified in Section 1 of this TM, characterizing loading to Falls Lake is one of the UNRBA’s primary 
monitoring objectives. The UNRBA Modeling Framework for the Re-examination of Stage II proposes an 
updated version of the EFDC model which was previously used by DWR to develop the Falls Lake Rules. 
The existing version of the Falls Lake Nutrient Response Model requires estimates of daily flow and 
nutrient inputs from 17 tributaries around Falls Lake. When developing the initial Falls Lake model, DWR 
did not have daily observations of relevant parameters to meet the model’s input requirements. Instead, 
they used linear interpolation between monthly observations to simulate daily estimates of necessary 
water quality parameters at sites with available data. For sites without observations, DWR used linear 
interpolation with monthly data from nearby sites as input to the model. For parameters without available 
tributary data (e.g. total organic carbon and chlorophyll a), DWR interpolated between observations at 
nearby lake monitoring stations and used those values as inputs to the lake model. The limited data 
available for model input has been previously identified as a gap that UNRBA would like to fill with its 
monitoring program. While daily monitoring remains out of reach, identifying locations and sampling 
frequencies which provide the largest improvements in model confidence is a priority which can be aided 
by quantitative statistical models. 

In addition to informing sampling frequencies, statistical models have the ability to provide daily estimates 
of water quality data for time periods without daily measurements. Such simulated data could be used as 
input to the Falls Lake Nutrient Response Model to characterize boundary conditions. There are multiple 
possible models that could be used to simulate daily values from a set of observations, including linear 
interpolation as was performed by DWR. Other models include USGS’ LOADEST model and empirical 
regression models. The current TM presents one set of watershed regression models based on data 
collected within the Falls Lake watershed and asks how well these models can simulate water quality 
given a limited number of observations, whether certain sites are better predicted than others, and how 
confidence in simulated values is affected by sample size. The primary purpose of this TM is to use the 
answers to these questions, along with expected site-specific water quality and flow, to identify sites 
which are candidates for increased sampling frequency (relative to a baseline frequency) due to either 
their expected load or the uncertain nature of that expected load.  

The statistical models used in this analysis relate measured water quality concentrations (total 
phosphorus, for instance) to measurements of properties that may contribute to the observed 
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concentration, such as precipitation, temperature, season, and stream flow (collectively termed 
“covariates”). When data on these covariates are available at a finer resolution than the water quality data 
itself, they can be used with a model to provide estimates of water quality on the days when it was not 
measured. If these covariates do contribute to the observed variation in water quality, then a model using 
these covariates will do a better job of estimating water quality than a model in which they are not 
included. No model perfectly represents reality, but metrics are available to judge how well a model is 
working compared to its stated goals (see section 4). Importantly, these metrics can be used to help 
identify which covariates are useful for estimating water quality (and which are not) and they can be used 
to evaluate, by location, a model’s ability to provide estimates of water quality on days without 
measurements.  

Differences in the model’s predictive ability among locations can help prioritize which sites should be 
sampled more frequently than others to better support the UNRBA program and refine the estimation 
methodology.  All else being equal, a site that is less-well predicted by models should be sampled more 
frequently than a site that is well predicted.  This is necessarily a relative comparison and, as this TM has 
noted, ideally data would be collected continuously at all locations. However, given that measurements 
will be made less frequently than daily, collecting data more frequently at less-well predicted sites allows 
monitoring dollars to be applied in a way that increases their utility compared to a one-size-fits-all uniform-
frequency sampling plan.  Adjusting sampling frequency in this way provides more observations at sites 
that aren’t predicted as well which will improve the accuracy of the daily simulated values used in the 
EFDC model. Furthermore, additional data can improve future model predictions by providing more 
precise estimates of the model terms that describe the relationships between observed water quality and 
the covariates (see section 5). 

In addition to informing monitoring design, the models presented here are a good option, but not the only 
option, to be used for simulating daily water quality values for the purpose of providing input to future 
revisions of the EFDC Lake Response model. A full evaluation and comparison of methods for this 
purpose is outside the scope of this TM.  This TM focuses on the models’ use for sampling design and 
points out some areas in which the models could be refined to improve their predictive power. However, 
even if these models are ultimately not used in simulating data for EFDC model input, they are currently 
useful in describing how well sites may be predicted relative to each other and in identifying sites which 
may benefit from more frequent sampling than others. 

Another of the UNRBA’s monitoring objectives is to collect data which enable the characterization of 
jurisdictional loading.  While daily simulated values are not explicitly necessary for this purpose, the 
models presented here also apply to jurisdictional boundary locations and can be used to describe the 
relationship between sampling frequency and confidence in estimates of water quality. This information 
can be used by the UNRBA to guide decisions regarding monitoring frequencies at jurisdictional boundary 
locations. 

Just as models aren’t perfect representations of reality, it’s also important to keep in mind that data are 
not perfect either. Even if there were no error in sampling or analytical techniques, a single data point 
collected on a given day would only be representative of the tributary at the location and instant at which it 
was collected.  The extent to which that data point represents the average value for the 24-hour period 
(the value used for the lake modeling effort) is unknown.  Additionally, models cannot predict events or 
changes in water quality that are determined by factors which are not included in the model.  For 
instance, the types of models discussed here cannot predict future violations of discharge permits or 
unlawful additions of sediment or nutrients to Falls Lake tributaries. However monitoring may not capture 
these events either; if discharge events happen at the scale of hours or days and monitoring happens at 
the scale of weeks or months. Capturing these inputs to Falls Lake would be a matter of chance. 
Prioritization of sites where these events are likely to occur will not be informed by model output; this 
would need to happen via discussions with and input from UNRBA members. 
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2.1 Statistical Model Use to Prioritize Monitoring Resources 
Because of the need to use models to estimate water quality between sampling events and because of 
the need to understand the uncertainty associated with model predictions and specifically how that should 
influence the sampling design, this TM and its associated modeling efforts were developed with the 
following goals: 

1. Use models and the associated evaluations of their fits to identify which locations of interest are 
predicted well (or poorly) by reasonable and cost-effective models, and therefore which sites are 
candidates for reduced (or increased) sampling frequencies relative to a baseline frequency (monthly 
sampling). 

2. Identify models which can be continually used and revised to adaptively assess model predictions at 
all monitoring locations with the goal of identifying sites which are candidates for reduced sampling 
frequency in future years. 

Provide the framework for an alternative to linear interpolation for estimating daily water quality 
concentrations and, in the process, identify which readily-available covariates best predict water quality 
parameters of concern.In addition to categorizing sites according to how well they can be predicted, there 
may be other reasons to choose to sample a site more frequently than others. For example, the 
magnitude of the expected load may influence monitoring priorities. Sites for which variability in nutrient 
concentrations cannot be predicted well, but which are expected to have very low flows (e.g. small 
drainage areas) paired with a low average nutrient concentration might not need to be sampled as 
frequently.   

To address the goals outlined above, this TM presents two statistical models developed for predicting 
daily water quality concentrations—one that predicts at sites for which data already exist and another that 
can predict at any latitude or longitude regardless of the presence of prior samples.  

The models presented in this TM could also be refined for future use in specific hypothesis testing about 
the effects of changes in the watershed on water quality.  Examples might include testing hypotheses 
about changes in water quality after discrete management actions (e.g. WWTP upgrades) or estimating 
gradual trends in water quality through time (e.g. effects of multiple BMP implementations over a period of 
years). 

2.2 Monitoring Implications 
Statistical models for water quality prediction were developed by Cardno ENTRIX to help design the 
Upper Neuse River Basin Association’s monitoring program. Statistical models based on existing 
monitoring data are used to determine where and when water quality can be predicted with a reasonable 
degree of confidence as well as to identify locations where models should not be used to predict current 
and future water quality conditions.  

The program will be optimized for cost and data needs with respect to uncertainty characterization. The 
monitoring program is being designed to be flexible and adaptive. The initial monitoring data will be 
reviewed for use in refining the monitoring program in future years. An annual review of monitoring data 
and statistical model updates will be used to support future monitoring program adjustments based on 
data analysis results and UNRBA’s evolving needs for supporting the re-examination objectives.  

The statistical models provide the expected daily mean nutrient concentrations as well as the width of the 
confidence intervals around the mean. This information can be used to adjust sampling frequency as 
needed.  Sites with high nutrient loading have a larger influence on Falls Lake Nutrient Response model 
chlorophyll a predictions than sites with low nutrient loading and should be monitored more frequently.   

Sites which are well-predicted by models (e.g. sites with narrow confidence intervals (CIs)) may not need 
to be sampled as frequently as sites with wide CIs.  The UNRBA may want to consider sampling sites 
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with narrow prediction intervals on a quarterly basis and then each year use the statistical model to test 
whether samples are significantly different from predictions.  If so, the frequency of sampling can be 
adjusted accordingly. Sampling frequency in year-one need not dictate frequency in all subsequent years; 
as the amount of data increases and the models’ predictive capacities are reassessed, UNRBA may be 
able to reduce sample frequency at many locations while increases in uncertainty at other locations may 
indicate increased sampling is justified. 
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3 Model Development 

Two separate models were developed for use in simulating water quality and are described below.  

Model 1 – Site Specific Model, is used for simulating water quality at sites for which historical data exist.  
The model simulations are informed by the historical data specific to the location of interest. 

Model 2 – Spatial Model, is used for simulating water quality at sites for which historical data are not 
available.  Simulations are informed by spatial relationships among locations and water quality. 

Each model was developed for use in simulating the water quality parameters Total Nitrogen (TN), Total 
Phosphorus (TP), and Total Suspended Solids (TSS). Total Organic Carbon (TOC) was included in Model 
1 only. The small number of samples available throughout the watershed limited the development of 
Model 2 for TOC.  The first statistical model is a linear regression model of water quality parameters as a 
function of time, site and other predictor variables (e.g. precipitation and stream flow).  The second 
statistical model replaces the explicit model term for site (which is in the first model) with a generic spatial 
latitude/longitude component.  The result is that the first model is useful for predicting at sites where 
historical monitoring has occurred, and will generally do so more accurately than the second model, but 
the second model is more flexible in that it can predict water quality at locations with no historical 
monitoring data. 

Both models were developed using historical data available in the Falls Lake watershed between 1999 
and 2011.  This data was compiled in a previous effort by Cardno ENTRIX to examine existing data in the 
watershed and further details can be found in Cardno ENTRIX Data Review TM November 2012.  In all, 
47 unique tributary locations had data available for TN, 55 locations for TP, 40 for TSS, and 13 locations 
had data available for TOC.   

Both models were developed as tools for informing monitoring design and for understanding whether 
certain sites are better predicted relative to others.  These are predictive models in the sense that they 
can provide predictions of water quality for a given set of covariate values; however, they were not 
developed specifically for this purpose.  Refinements in model development including incorporating 
spatial variation in precipitation and temperature and more thoroughly exploring the set of potential 
covariates may increase the predictive power of these models and would be necessary steps before 
these models were used to provide daily estimates of water quality for lake response modeling. The 
models were developed with readily available covariates that are logically and scientifically related to 
water quality concentrations.  The model selection process was rigorous but not exhaustive and the 
results presented here should be interpreted not as the best these models can do, but rather as their 
minimum performance.  Refinements may make them better, but they will always be able to perform as 
well as presented here. 

3.1 Model 1: For Prediction at Locations with Historical Data 
Model 1 predicts water quality parameters using available information such as precipitation and time of 
year.  Specifically, Model 1 is a general linear regression model relating the natural logarithm (ln) of each 
water quality parameter to a set of predictor variables as follows: 

ln�WQlymn� = µ + γl + τy + δm + xlymnβ + εlymn 
 

where WQlymn is the nth water quality measurement at site l, in year y and month m.  In the model, µ is 
the intercept, γl is the effect for location l, τy is the effect of year y, δm is the effect of month m, and xlymn 
is the vector of covariates for observation WQlymn.  Additionally, β is the vector of regression parameters 
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relating the predictor variables to the water quality measurements and εlymn is the error term which 
includes sources of variation not captured by the model’s predictor variables. Error terms were verified to 
be independent and identically-distributed normal random variables. This model was fit separately for 
each of four water quality parameters TN-N, TP-P, TOC and TSS and can also be applied to any other 
water quality parameters for which data exist. For purposes of monitoring design, a single global model 
was created for each of the four parameters and was fit to data from all locations jointly.  Each location 
with historical data has its own value of the location parameter, γl, allowing predictions to vary by location.  
Because the model includes an explicit term for location,  the model is only able to predict water quality at 
historically monitored locations. However, future monitoring at previously unmonitored locations would 
enable this model to be applied to those new sites for analysis or prediction. The year and month terms,  
τy and δm, respectively, account for differences from one year to the next as well as seasonal patterns 
within years. The covariates  xlymn and their associated regression parameters β allow the model to 
account for environmental or other physical variables that may explain variation in water quality.  The 
predictor variables included in each water quality model are presented in Table 3-1.  

Table 3-1 List of Model 1 Covariates included in each Water Quality Model   

The symbol * denotes an interaction term between two predictor variables. 

TN TP TSS TOC 

Precipitation Precipitation Precipitation Precipitation 

Precipitation*Catchment 
Area 

Precipitation*Catchment 
Area 

Precipitation*Catchment 
Area 

Precipitation*Catchment 
Area 

ln(Flow) ln(Flow) ln(Flow) ln(Flow) 

[ln(Flow)]2 [ln(Flow)]2 [ln(Flow)]2 [ln(Flow)]2 

Maximum Daily 
Temperature 

Maximum Daily 
Temperature 

Maximum Daily 
Temperature 

 

Precipitation on Day Prior Precipitation on Day Prior Precipitation on Day Prior  

Precipitation Two Days 
Prior 

Precipitation Two Days 
Prior 

Precipitation Two Days 
Prior 

 

  

Due to the availability of many fewer existing TOC measurements compared to the other water quality 
parameters, the TOC model is simpler than the other models and does not contain a year  
effect τy. which contributed minimally to the fit of the TOC model.   

Regarding the predictor variables, both daily precipitation and maximum daily temperature were obtained 
from a single location in the basin to cover the period of 1999-2011 and were applied to all sites in the 
entire basin. More spatially-explicit versions of these predictor variables could be considered for future 
model versions.   

Similarly, five unregulated flow gages in the basin provide the flow information used for all sites. For each 
site, the most representative flow gage was selected based on professional judgment considering both 
proximity to the gaged location and similarities in land use within the watersheds. The flows measured at 
the gage itself were then prorated based on drainage area to convert flow at the flow gage to predicted 
flow at the site of interest.    

Standard model-checks were conducted to ensure there were no problematic violations of model 
assumptions. It was noted that some locations had more variable water quality measurements than 
others. In particular, locations downstream of wastewater treatment plants often had highly variable water 
quality measurements. Future model versions could account for this behavior explicitly and uncertainty 
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measures adjusted accordingly. However for planning the monitoring design, model fits assumed 
constant variability at all locations. 

Model 1 was developed to meet multiple objectives related to monitoring design and planning, and thus 
Model 1 may later be enhanced or improved for very specific purposes.  Future versions, for example 
based on additional or refined environmental predictors, may predict water quality parameters better than 
the current version.  Then these predictions could be used in lieu of physical monitoring.  As another 
example, Model 1 may be extended to test for trends through time in a water quality parameter at a 
particular site of interest.   

3.2 Model 2: For Prediction at Locations without Historical Data 
Because not all sites under consideration for future monitoring have been monitored previously, a second 
model was fit to aid in prioritizing these sites. These potential monitoring sites include approximately 21 
jurisdictional boundaries and 12 ungaged Falls Lake tributaries where we want to understand water 
quality and nutrient loading. Model 2 differs from Model 1 in that there are no explicit location terms in 
Model 2.  Instead, Model 2 is spatial in that the latitude and longitude of each water quality observation is 
entered into the model and general spatial patterns and trends are considered by the model. Model 2 is a 
geospatial statistical model.  The form of Model 2 for a given water quality parameter is as follows:  

ln�WQymn� = f(latymn, longymn) + τy + δm + xymnβ + εymn 

where 𝑊𝑄𝑦𝑚𝑛 is the 𝑛𝑡ℎ water quality measurement in year 𝑦 and month 𝑚.  The spatially-referenced 
water quality measurement is taken at latitude/longitude 𝑙𝑎𝑡𝑦𝑚𝑛 , 𝑙𝑜𝑛𝑔𝑦𝑚𝑛 and the year and month effects 
are the same as in Model 1.  The set of explanatory variables 𝒙𝑦𝑚𝑛 includes additional information relative 
to Model 1, namely land-use and other physical characteristics of a monitoring location.  Note Model 2 
was not fit for TOC due to the limited spatial coverage of historical monitoring for this parameter.   

In Model 2, the function  𝑓(𝑙𝑎𝑡𝑦𝑚𝑛 , 𝑙𝑜𝑛𝑔𝑦𝑚𝑛) is a smoothly varying spline function of locations. Such a 
model is useful for modeling spatial trends and patterns and ultimately borrowing information from nearby 
locations when predicting at a new location. Model 2 is a type of geospatial model called a generalized 
additive model (Wood 2006). Generalized additive models (GAMs) have become common modeling tools 
in environmental applications, including water quality assessments (e.g. Richards et al. 2010; Trossman 
et al. 2011).  A GAM has the flexibility to incorporate predictor variables in a similar way to standard linear 
regression models while also incorporating the spatial patterns which often exist in observational 
environmental data. In addition to water quality predictions, Model 2 provides associated uncertainty 
measures in the form of prediction intervals for WQ parameters of interest.   

Various potential predictor variables were considered for each model with a combination of subject-
knowledge and the model selection tool Akaike’s Information Criterion (AIC – Akaike 1974, Burnham and 
Anderson 2002). For example, including predictor variables in Model 2 that are not available in new 
locations would limit the model’s ability to predict in those new locations.  The predictor variables included 
in the TN, TP and TSS models are presented in Table 3-2.  A number of additional covariates were 
evaluated for inclusion in Model 2, but if they did not improve model fit, they were not included in the final 
model. Table 3-2 includes some of the additional covariates that were evaluated and found not to improve 
model fit.  
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Table 3-2 List of Model 2 Covariates included in each Water Quality Model   

The symbol * denotes an interaction term between two predictor variables. 

Model 2 Covariates used for each Water Quality 
Parameter: TN, TP, and TSS 

Model 2 Covariates considered, but which did not 
improve model predictions 

Precipitation Elevation of location where sample was taken  

Precipitation*Catchment Area Percent of land that is agricultural in a location's 
catchment 

In(Flow) Percent of land that is developed in a location's 
catchment 

[ln(Flow)]2 Geology: percent of a location's catchment that is 
Carolina Slate Belt  

Terrain slope index 1 Geology: percent of a location's catchment that is 
Raleigh Belt  

Terrain slope index 2 Geology: percent of a location's catchment that is 
Triassic Basin  

Elevation index 1 Geology: percent of a location's catchment that is 
Coastal Plain  

Elevation index 2 Maximum temp for the day of the observation 

Percent impervious surface in 2006 Minimum temp for the day of the observation 

Percent wetlands in 2006 Natural logarithm of flow 

5-year peak flow level Precipitation one day prior 

Percent forest in 2006 Precipitation two days prior 

Finally, continuous predictor variables were centered and scaled (by their means and standard deviations, 
respectively) in order to improve computation during model fitting. All models were fit in the R 
programming language for statistical computing (R Core Team 2013). Generalized Additive Models were 
fit using the R Package mgcv (Wood 2006).   
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4 Model Application and Results 

Both models described in section 3 were applied to yield information relevant to designing the UNRBA 
monitoring program.  This section describes the application of these models which includes summaries of 
model performance (e.g. fit statistics) and appropriate model output useful for decision-making. The two 
general models are used to compare locations that will be monitored in order to prioritize the locations 
based on: 

1. Magnitude of WQ parameters (e.g. identifying sites with high nutrient concentrations) 

2. Ability to predict WQ parameters using the statistical models described above  

3. Amount of existing information useful for prediction in future years (previous monitoring effort) 

4.1 Model Fits and Diagnostics    
Final model specification resulted from exploratory data analysis as well as discussion with water quality 
experts.  For measurements to be included in the model fits, all covariates used by the model must have 
been available on the same day as the measurements.    

4.1.1 Model 1 

Model 1 was applied to four WQ parameters: TN, TP, TSS and TOC.  Table 4-1 summarizes key fit 
statistics for each WQ parameter model, including the R2 (coefficient of determination) and sample size 
involved in the fit. Models for all parameters were highly significant (p << 0.0001). Visual model checks 
were performed to identify lack of model fit issues.  Figures 4-1 through 4-4 demonstrate plots of the 
Model 1-based WQ predictions against the actual measurements.  Points near the red line represent 
measurements that are well-predicted by Model 1. 

Table 4-1 R-squared Values, Sample Sizes, and Root Mean Square Error (RMSE) for the 
Linear Models (Model 1) fit for each WQ Parameter  

The RMSE is provided in log-units, which are the units of the model. 

Parameter  R-squared value Sample Size RMSE 

TN 0.67 1886 0.17 

TP 0.51 2229 0.39 

TSS 0.55 1081 0.55 

TOC 0.73 162 0.072 
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Figure 4-1 Observed Compared to Predicted Total Nitrogen Concentrations from Model 1 

Axes are on the log scale and the red line is the 1:1 line.  
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Figure 4-2 Observed Compared to Predicted Total Phosphorus Concentrations from Model 1   

Axes are on the log scale; the red line is the 1:1 line where predictions are the same as 
observed values. (The banding in observed values are artifacts of laboratory reporting 
methods, significant figures, and different laboratory reporting limits.)  
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Figure 4-3 Observed Compared to Predicted Total Suspended Solids Concentrations from 

Model 1   

The axes are on the log scale and the red line represents the 1:1 line.  

 

R
2
=0.55 



Water Quality Estimation and Monitoring Optimization 
UNRBA Monitoring Program Development and Implementation  

April 25, 2014  Cardno ENTRIX Model Application and Results  4-5 
 

 
Figure 4-4 Observed Compared to Predicted Total Organic Carbon Concentrations from 

Model 1 

Axes are on the log scale and the red line is the 1:1 line.  

R
2
=0.73 



Water Quality Estimation and Monitoring Optimization 
UNRBA Monitoring Program Development and Implementation 

April 25, 2014 Cardno ENTRIX Model Application and Results   4-6 
 

4.1.2 Model 2 

Specification (development) of Model 2 relied on knowledge gained during exploratory analysis as well as 
from specification of Model 1.  Model 2 is an alternative to Model 1 that allows for prediction of WQ values 
at locations that have no historical monitoring.  As described above, Model 2 accomplishes this through 
the identification of spatial relationships over the watershed instead of identifying and estimating location-
specific behavior as is the case with Model 1.  

Because Model 2 does not explicitly include terms for location, Model 2 is not expected to   fit the 
historical data set as well as Model 1, but Model 2 has the flexibility to predict at new locations with no 
historical monitoring. Indeed Model 2 exhibited slight decreases in R2 relative to Model 1, as shown in 
Table 4-2.  These reductions are not large, however, suggesting that the covariates added to the model in 
place of specific location parameters (e.g. forest, wetland, and impervious surface cover along with 
measures of watershed slope and elevation) are useful surrogates.  Model 2 was not fit to the parameter 
TOC due to the small number of unique locations where TOC measurements were available. 

Table 4-2 R-squared Values, Sample Sizes, and Root Mean Square Error (RMSE) for the 
Spatial Model (Model 2) fit for the WQ Parameters TN, TP, and TSS 

RMSE is provided in the model units of ln(TN), ln(TP), and ln(TSS).   

Parameter  R-squared value Sample Size RMSE 

TN 0.64 1982 0.19 

TP 0.47 2338 0.43 

TSS 0.54 1145 0.54 

Similar to Model 1, Model 2 suggests no systematic model problems based on evaluation of plots of the 
fitted versus observed WQ measurements (Figures 4-5-4-7).
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Figure 4-5 Observed Compared to Predicted Total Nitrogen Concentrations from Model 2   

Axes are on the log scale and the red line represents the 1:1 line. 
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Figure 4-6 Observed Compared to Predicted Total Phosphorus Concentrations from Model 2 

Axes are on the log scale and the red line represents the 1:1 line. 
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Figure 4-7 Observed Compared to Predicted Total Suspended Solids Concentrations from 

Model 2  

Axes are on the log scale and the red line represents the 1:1 line. 
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4.2 Model 1 and Model 2 Limitations 
Both Model 1 and Model 2 are subject to certain limitations which are described in this section.  First, 
model predictions are not as accurate downstream of large wastewater treatment plants compared to 
most other locations.  This behavior is not unexpected: the impact of waste water treatment plants or 
large reservoirs on downstream WQ is not accounted for by any of the predictor variables in either model.  
Such locations were identified visually during model diagnostics. Generally these locations had WQ 
measurements that were highly variable around the model’s corresponding predictions.   

Model 1 and Model 2 each account for changes in overall watershed behavior by year, after accounting 
for other environmental drivers such as precipitation. If particular locations behave differently than general 
trends, WQ at these locations may be poorly predicted by the models. However, the models can be used 
to identify such locations as well as investigate them further (e.g. by testing for changes in WQ at a 
location).   

In addition to the unpredictability caused by wastewater treatment plants, locations may be difficult to 
predict due to other discharges or rapid changes in land-use, causing a location to behave differently than 
its history would suggest. These changes may be ultimately accounted for by further refinement of the 
models.   
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5 Determination of Monitoring Frequency for 
Existing and Proposed Monitoring Locations 

Both Model 1 and Model 2 are useful for predicting WQ as well as indicating the amount of uncertainty 
associated with those predictions.  This section presents examples of relevant output from the two models 
for consideration when making decisions regarding the UNRBA monitoring design. This section provides 
the background for the creation of these model-based outputs. Because of the small number of tributary 
locations with available TOC data, only model output for TN, TP, and TSS will be examined for 
categorizing monitoring locations with respect to monitoring frequency. After one or two years of collecting 
TOC data in the watershed, the models could be revisited to assess predictability of TOC and the 
relationship between sample size and relative error of the mean. 

1. Relevant information used to identify potential monitoring locations and determine the appropriate 
monitoring frequency includes the magnitude of estimated WQ concentrations and loads (e.g. 
identifying locations with high expected nutrient contributions to Falls Lake). 

2. Amount of uncertainty in WQ estimates due to lack of historical information (identifying locations with 
large confidence intervals for model-estimated nutrient concentrations and therefore potentially large, 
but uncertain, contributions of nutrients or TSS to downstream waters). 

Uncertainty associated with linear model output can be provided as confidence intervals. Confidence 
intervals describe the ability of the researcher to identify the expected nutrient concentration, that is, the 
ability of the researcher to identify the center of a distribution. An important point is that as more and more 
data are obtained, the ability of the model to identify the expected concentration improves until it is nearly 
known perfectly.  However, because that expected concentration is simply the center of a distribution, any 
individual observation of WQ will still vary around this expected value.   

Therefore, when designing the monitoring program, it may be informative to consider confidence interval 
size to describe the amount of historical data available at a location. Sites generally have smaller 
confidence intervals on their mean estimates when there is lots of data, whereas larger confidence 
intervals are generally reflective of smaller sample sizes. Confidence intervals on the mean do not 
account for variation in the actual water quality measurements that occur on a day–to-day or even hour-
to-hour basis.   

5.1 Sample Size and Relative Error 
As discussed, increased sample sizes at a given location lead to improved predictions as measured by 
smaller confidence intervals.  To examine this concept further, one may consider the relative error rates 
that are expected given different sample sizes.  Relative error is calculated as a percent of the mean as 
follows: 

Percent relative error = 𝑈𝑝𝑝𝑒𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑊𝑄 − 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑊𝑄
𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑊𝑄

× 100% 

and is obtained from the confidence intervals (upper bound minus midpoint divided by midpoint).  For 
example, if average WQ is 10 and for a given sample size we expect a 90% confidence interval to range 
from a low of 5 to a high of 15, then the expected relative error rate (for 90% confidence) is: 

�
15 − 10

10
� × 100% = 50% 𝑒𝑟𝑟𝑜𝑟 

Model 1 was used to explore the relationship between sample size and the resulting relative error around 
the estimate of the mean predictions for TN, TP, and TSS for a 90% confidence interval.  The sample size 
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requirements which are expected to yield specified error rates are presented in Table 5-1 (based on 90% 
Confidence Intervals). These sample sizes represent total sample sizes used in the model and could 
cover multiple years; for example, a sample size of 60 could be obtained through monthly sampling for 
five years or weekly sampling for a little more than one year.   

Table 5-1 Relative Error Rates for 90% Confidence Interval for Total Nitrogen, Total 
Phosphorus and Total Suspended Solids 

Entries denote the number of samples expected to yield the given error rates.   

Relative Error Around the Estimate of the Mean  

 10% 20% 30% 40% 50% 

TN 99 27 13 8 6 

TP 218 60 29 18 13 

TSS >260 105 51 31 22 

5.2 Using Model Output in Determination of Sampling Frequency at Lake 
Loading Sites and Jurisdictional Boundaries  

Establishing the sampling frequency for a monitoring plan requires balancing costs with desired 
confidence in the characterization of the daily load at each monitoring location.  The most confidence 
comes with collection of instantaneous measurements which unfortunately is not technologically possible 
for most parameters of interest.  Daily sampling is possible and would provide a great deal of confidence 
in daily water quality concentrations, but the associated cost is in the millions of dollars per year. Given 
the realities of budget constraints, judgments must be made regarding the acceptable error for model 
estimates for each location and water quality parameter. Logistically, the easiest monitoring plan is to pick 
a single sampling frequency which meets the minimum acceptable error threshold and apply that across 
all locations.  However, improvements can be made by applying those same monitoring dollars to 
monitoring locations differentially.  For instance, it is important to have a higher confidence (lower relative 
error) in predictions for the tributaries contributing the largest proportion of nutrients to Falls Lake while a 
higher relative error rate (and thus fewer samples) may be acceptable for tributaries which contribute less 
than a percent or two of the total load.  

Historical data provides a foundation for model building and also influences the number of future samples 
necessary to achieve a desired level of confidence in model predictions. If a location of interest already 
has the required number of samples to meet the desired relative error of model predictions (Table 5-1), 
then future sampling could occur at a reduced rate with samples collected only 4-6 times per year in order 
to verify model performance.  

Monitoring frequency is also affected by project goals and needs. For example, information on loading to 
Falls Lake is required at a daily time step for the EFDC lake model, while jurisdictional loads are 
calculated as annual averages. Because of these differing goals, these two categories of sites are treated 
as separate groups to simplify the design of the monitoring plan. Below we discuss how model predictions 
and confidence intervals can be used to select appropriate monitoring frequencies specific to a given 
location.  Further details on the selection of monitoring locations and proposed monitoring frequency for 
each are provided in Section 6.  The locations presented below to illustrate the methods include more 
sites than will likely be monitored; some jurisdictional loading locations may not be publicly accessible 
(Camp Creek at Camp Butner, for example) and in some cases multiple lake loading locations on a single 
tributary have been included for comparison. 

The first step in designing a differential-frequency monitoring plan is to examine the predicted loads and 
associated uncertainty for each potential monitoring location with the assumption that it might be useful to 



Water Quality Estimation and Monitoring Optimization 
UNRBA Monitoring Program Development and Implementation  

April 25, 2014  Cardno ENTRIX Determination of Monitoring Frequency for 
Existing and Proposed Monitoring Locations  5-3 
 

sample sites with the largest loads frequently in order to reduce the relative error at sites with the largest 
influence on lake loading. The models presented in this TM provide predictions of water quality 
concentrations (TN, TP, and TSS) and associated uncertainty.  To obtain loads, these concentrations 
need to be multiplied by expected flow at each tributary.  Cardno ENTRIX has previously prepared a 
Technical Memo on estimating flow at ungaged locations (Cardno ENTRIX Flow Estimation TM March 
2014).  Here, we use the basin proration technique described in that memo to obtain the 10-year average 
daily flow at each location (for jurisdictional boundary sites) or 10-year average daily flow to Falls Lake 
from each tributary (for lake-loading sites).  These long-term averages provide a robust comparison of 
flow among sites which is not unduly influenced by particularly wet or dry years.  Specifically, the flow was 
estimated for each location based on the 10-year USGS flow record from 2004 through 2013. 

For monitoring locations with USGS gages installed, the mean flow from the daily record over this period 
was obtained and applied to the monitoring location.  For locations which are partially gaged (e.g. there is 
a gage upstream of the sampling location), the average flow from the gage was applied to the drainage 
area represented by the gage.  If the gage was unregulated, the same flow (relative to drainage area) was 
applied to the ungaged drainage area to obtain the total estimated flow for the location.  If the gage was 
regulated, but the flow downstream was not (e.g. the gage is at a dam release or WWTP outfall but the 
monitoring site is further downstream), the gaged data was applied to the drainage area represented by 
the gage, but the remaining drainage area contributing to the monitoring location was assigned the mean 
annual flow (normalized to drainage area) for all unregulated gages in the Falls Lake basin over the 10-
year period.  This value is 0.60 cfs/mi2 (± 0.043 SD).  The 10-year daily average flow at all potential 
monitoring locations without upstream gages was estimated using 0.60 cfs per square mile of drainage 
area.  The flow estimates are presented in Tables 5-4 through 5-6 (for lake loading Sites) and 5-8 through 
5-10 (for jurisdictional boundary sites).  For the lake loading tributaries with more than one potential 
monitoring location under consideration, the flow was estimated at the most downstream location on the 
tributary. 

Model predictions of WQ were made using models 1 and 2 (as appropriate, based on available data at a 
proposed monitoring location) for an average day in July 2008. In order to compare model predictions 
across the two models, predictions need to be made for the same time period, however the choice of date 
is arbitrary and unimportant.  The ranking of sites is unaffected by date selection.  July 2008 was selected 
based on a cursory examination of the historical data as a typical (non-extreme) time period. Predicted 
water quality concentrations and associated confidence intervals are shown in figures 5-1 through 5-6 and 
tables 5-4 through 5-6 (for lake loading Sites) and 5-8 through 5-10 (for jurisdictional boundary sites).  
The confidence intervals are expressed as relative error in the tables (see section 5.1 for details). 

A load index was calculated as the product of the estimated flow (cfs) and expected concentration (mg/L) 
for each site with all applicable unit conversions to obtain load in lbs/day. Because the flow estimates and 
water quality estimates cover different periods of time, the calculation of load presented in tables 5-4 
through 5-10 is an index of load rather than a specific prediction or average for any period of time. While 
the order of magnitude on the relative load index is typical, the load index should be interpreted neither as 
the actual or predicted load for any particular date, nor as the average load for any particular year or 
period of years; rather, it simply provides a relative ranking of load predictions.   

The upper confidence limit for the load index was calculated as above, but using the expected load plus 
the relative error of the mean.  For example the upper CI on the load index for a site with an expected 
load of 100 lbs/day and a relative error of 40% would be 140 lbs/day.  

To account for this site-specific uncertainty in model predictions, the proposed monitoring locations were 
then ranked according to the high estimate of their expected load as a proportion of the total expected 
load to Falls Lake. This proportional load index was calculated for each site as follows:  For each of the 
lake loading monitoring sites, a total load was calculated as the sum of the upper confidence limit on the 
load at the site of interest plus the mean expected loads from the most downstream stations on each of 
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the remaining 17 tributaries. The upper confidence limit on the loading at each tributary was then divided 
by this estimated total load to provide an upper estimate of the potential contribution of each tributary to 
the total lake load. Thus,  

Proportion of total load from tributary i =
𝐿𝑜𝑎𝑑𝑈𝐶𝐼,𝑖

𝐿𝑜𝑎𝑑𝑈𝐶𝐼,𝑖 +  ∑ 𝐿𝑜𝑎𝑑𝑆/𝑖
 

where, 𝐿𝑜𝑎𝑑𝑈𝐶𝐼,𝑖 is the upper confidence limit of the load for site i, and ∑ 𝐿𝑜𝑎𝑑𝑆/𝑖  is the sum of the 
expected (mean) load over all 18 loading sites (S) excluding site i.   

Sites with high expected loads, or moderate expected loads coupled with high uncertainty, are thus 
ranked higher than sites with low expected loads. As with the load index, this proportional load calculation 
is also an index—it should not be interpreted as a specific prediction of the contribution from each 
tributary but rather as a relative index of the uppermost likely value based on preliminary model output. 
Because error in water quality predictions is compounded by flow, two sites with similar nutrient 
concentrations and confidence intervals could have very different effects on Falls Lake water quality if 
their flows are substantially different. Reducing the uncertainty in estimates at a site with high flow will 
reduce uncertainty in the overall load much more than reducing uncertainty at a site with low flow.   By 
combining WQ predictions, uncertainty, and flow estimates, this ranking is used to focus monitoring effort 
on the sites with largest impact on Falls Lake loads.  

Sites were ranked individually for TN, TP, and TSS and were separated into groups of sites important for 
estimating tributary loading to Falls Lake and sites important for estimating jurisdictional loads. Tables 5-7 
and 5-11 summarize the rankings across all three WQ parameters and are sorted according to the 
minimum ranking across all parameters. These tables provide a ranking of locations that identifies which 
locations may benefit from an increased sampling frequency relative to a baseline sampling frequency. 
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Figure 5-1 Estimated Daily Mean TN for July 2008 and 90% Confidence Intervals for Lake Loading locations  
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Figure 5-2 Estimated Daily Mean TP for July 2008 and 90% Confidence Intervals for Lake Loading locations  
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Figure 5-3 Estimated Daily Mean TSS for July 2008 and 90% Confidence Intervals for Lake Loading locations 
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Figure 5-4 Estimated Daily Mean TN for July 2008 and 90% Confidence Intervals for Jurisdictional Boundary locations 
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Figure 5-5 Estimated Daily Mean TP for July 2008 and 90% Confidence Intervals for Jurisdictional Boundary locations 
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Figure 5-6 Estimated Daily Mean TSS for July 2008 and 90% Confidence Intervals for Jurisdictional Boundary locations 
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Table 5-4 Modeled TN Concentrations at Potential Lake Loading Monitoring Sites along with an Index of the Total Load to Falls 
Lake Coming from each Tributary 

Cells highlighted in red indicate the highest 33% of sites and those in green the lowest 33%.   

Tributary Road Crossing 
Tributary 
Flow1 
 (mean 
daily, cfs) 

Modeled TN  
Concentration2  
(mg/L) 

Relative 
Error of 
Mean 

Load 
Index3 
(lb/day) 

Upper 
Confidence 
Limit of Load 
Index 
(lb/day) 

Index of 
Proportional 
Load from 
Tributary 

Rank,  
Proportion
al Load 

Model n 

Flat River at Old Oxford Hwy 96.8 0.72 13% 375 423 21% 4 1 99 
Knap of Reeds Creek off Brickhouse Road 25.5 0.72 16% 99.1 115 6% 8 2  
Eno River + Little River at Red Mill Road 140 1.08 35% 816 1105 38% 2 2  
Eno River at Old Oxford Hwy  92.8 0.67 12% 334 374 19% 5 1 113 
Little River at Old Oxford Hwy 43.7 0.77 17% 181 213 11% 7 2   
Little River at Vintage Hill Pkwy 43.7 0.85 12% 201 225 11% 6 1 105 
Ellerbe  Creek at Red Mill Road 41.0 2.74 15% 606 698 35% 3 2  
Ellerbe  Creek at Glenn Road 41.0 3.29 11% 727 806 38% 1 1 214 
Unnamed Tributary to Falls  at Northside Road 2.06 0.76 21% 8.49 10.2 0.5% 25 2   
Panther Creek at Cooksbury Drive 1.94 0.98 19% 10.2 12.2 0.6% 23 2   
Panther Creek at Burton Road 1.94 0.90 19% 9.44 11.2 0.6% 24 1 28 
Ledge Creek at Northside Road 14.5 0.38 42% 29.4 41.6 2.1% 14 2   
Little Lick Creek at Patterson Road 8.31 0.91 26% 40.8 51.7 2.7% 13 2  
Little Lick Creek at Stallings Road 8.31 1.08 39% 48.3 67.3 3.4% 10 1 5 
Robertson Creek at Brassfield Road 8.87 0.20 81% 9.74 17.7 0.9% 19 2   
Beaverdam Creek at Horseshoe Road 8.22 0.15 130% 6.66 15.3 0.8% 21 2  
Smith Creek at Lawrence Road 6.36 0.08 116% 2.72 5.89 0.3% 26 2   
Lick Creek at Hwy 98 8.17 0.95 30% 41.7 54.4 2.8% 12 2  
Lick Creek at Southview Road 8.17 0.73 20% 32.3 38.9 2.0% 15 1 21 
New Light Creek at Woodlief Road 10.3 0.26 55% 14.4 22.3 1.2% 18 2  
New Light Creek at Mangum Dairy Rd 10.3 0.60 18% 33.3 39.3 2.0% 16 1 23 
Upper Barton Creek at Mt Vernon Church  4.95 3.47 21% 92.7 112.1 5.8% 9 2  
Lower Barton Creek at State Rd 1834  6.26 1.53 19% 51.5 61.4 3.2% 11 1 20 
Horse Creek at Hwy 98 8.87 0.24 54% 11.4 17.6 0.9% 20 2   
Horse Creek at Thompson Mill Rd 8.87 0.52 19% 24.7 29.5 1.5% 17 1 20 
Honeycutt Creek at Honeycutt Road 2.94 0.65 30% 10.4 13.5 0.7% 22 2  

1Mean daily flow is the average daily flow for a tributary based on the 10-year average daily flow between 2004 and 2013.  For tributaries that are gaged, the average flow for the most 
downstream gage was applied to the relevant watershed area.  If flow at the most downstream gage is regulated, the remainder of the ungaged watershed area was assigned the 
average ungaged areal flow rate for the basin. For ungaged tributaries, flow was calculated based on basin proration, using the average flow for all unregulated gages. 
2The modeled concentration is the mean concentration expected for an arbitrarily selected date in July 2008.  The selection of the date is unimportant for the task of ranking sites 
because although values change from day to day, the rankings among sites will not.      
3The load index is the product of flow and the expected concentration.  This is an index because it is not representative of the conditions on any specific date nor is it the annual mean.  
It is the product of 10-year average flow conditions for a tributary and the modeled concentration at a given site and time.  This provides a ranking of sites from highest to lowest 
contribution to loading to Falls Lake to be used as one factor in allocating monitoring resources. 
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Table 5-5 Modeled TP Concentrations at Potential Lake Loading Monitoring Sites along with an Index of the Total Load to Falls 
Lake Coming from each Tributary 

Cells highlighted in red indicate the highest 33% of sites and those in green the lowest 33%. 

Tributary Road Crossing 
Tributary 
Flow1 
 (mean 
daily, cfs) 

Modeled TP  
Concentration2  
(mg/L) 

Relative 
Error of 
Mean 

Load 
Index3 
(lb/day) 

Upper 
Confidence 
Limit of 
Load Index 
(lb/day) 

Index of 
Proportional 
Load from 
Tributary 

Rank,  
Proportional 
Load 

Model n 

Flat River at Old Oxford Hwy 96.8 0.04 16% 20.39 23.75 19% 4 1 134 
Knap of Reeds Creek off of Brickhouse Rd 25.5 0.08 26% 11.64 14.63 12% 6 2  
Eno River + Little River at Red Mill Road 140 0.07 35% 55.50 75.15 41% 1 2  
Eno River at Old Oxford Hwy  92.8 0.03 17% 16.90 19.76 16% 5 1 118 
Little River at Old Oxford Hwy 43.7 0.04 21% 9.66 11.64 10% 8 2   
Little River at Vintage Hill Pkwy 43.7 0.05 17% 11.31 13.27 11% 7 1 105 
Ellerbe  Creek at Red Mill Road 41.0 0.15 14% 32.87 37.63 30% 3 1 199 
Ellerbe  Creek at Glenn Road 41.0 0.18 15% 38.88 44.60 34% 2 1 217 
Unnamed Tributary to Falls  at Northside Road 2.06 0.10 41% 1.06 1.49 1.2% 24 2   
Panther Creek at Cooksbury Drive 1.94 0.10 24% 1.02 1.26 1.1% 25 2   
Panther Creek at Burton Road 1.94 0.09 28% 0.92 1.18 1.0% 26 1 28 
Ledge Creek at Northside Road 14.5 0.07 51% 5.40 8.15 6.7% 10 2   
Little Lick Creek at Patterson Road 8.31 0.11 29% 4.86 6.28 5.2% 11 2  
Little Lick Creek at Stallings Road 8.31 0.15 64% 6.91 11.31 9.0% 9 1 5 
Robertson Creek at Brassfield Road 8.87 0.04 61% 1.79 2.88 2.4% 15 2   
Beaverdam Creek at Horseshoe Road 8.22 0.04 76% 1.55 2.73 2.3% 17 2  
Smith Creek at Lawrence Road 6.36 0.03 102% 1.14 2.30 1.9% 21 2   
Lick Creek at Hwy 98 8.17 0.06 25% 2.71 3.39 2.8% 13 2  
Lick Creek at Southview Road 8.17 0.05 31% 2.09 2.74 2.3% 16 1 21 
New Light Creek at Woodlief Road 10.3 0.03 55% 1.86 2.89 2.4% 14 2  
New Light Creek at Mangum Dairy Rd 10.3 0.06 29% 3.43 4.42 3.6% 12 1 21 
Upper Barton Creek at Mt Vernon Church  4.95 0.08 24% 2.17 2.70 2.2% 18 2  
Lower Barton Creek at State Rd 1834  6.26 0.05 30% 1.54 1.99 1.7% 22 1 20 
Horse Creek at Hwy 98 8.87 0.03 57% 1.64 2.58 2.1% 19 2   
Horse Creek at Thompson Mill Rd 8.87 0.04 30% 1.82 2.37 2.0% 20 1 20 
Honeycutt Creek at Honeycutt Road 2.94 0.07 33% 1.16 1.53 1.3% 23 2  

1Mean daily flow is the average daily flow for a tributary based on the 10-year average daily flow between 2004 and 2013.  For tributaries that are gaged, the average flow for the most 
downstream gage was applied to the relevant watershed area.  If flow at the most downstream gage is regulated, the remainder of the ungaged watershed area was assigned the 
average ungaged areal flow rate for the basin. For ungaged tributaries, flow was calculated based on basin proration, using the average flow for all unregulated gages. 
2The modeled concentration is the mean concentration expected for an arbitrarily selected date in July 2008.  The selection of the date is unimportant for the task of ranking sites 
because although values change from day to day, the rankings among sites will not.      
3The load index is the product of flow and the expected concentration.  This is an index because it is not representative of the conditions on any specific date nor is it the annual mean.  
It is the product of 10-year average flow conditions for a tributary and the modeled concentration at a given site and time.  This provides a ranking of sites from highest to lowest 
contribution to loading to Falls Lake to be used as one factor in allocating monitoring resources.  
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Table 5-6 Modeled TSS Concentrations at Potential Lake Loading Monitoring Sites along with an Index of the Total Load to Falls 
Lake Coming from each Tributary 

Cells highlighted in red indicate the highest 33% of sites and those in green the lowest 33%.   

Tributary Road Crossing 
Tributary 
Flow1 
 (mean 
daily, cfs) 

Modeled TSS  
Concentration2  
(mg/L) 

Relative 
Error of 
Mean 

Load 
Index3 
(lb/day) 

Upper 
Confidence 
Limit of Load 
Index 
(lb/day) 

Index of 
Proportional 
Load from 
Tributary 

Rank,  
Proportional 
Load 

Model n 

Flat River at Old Oxford Hwy 96.8 4.44 35% 2320 3143 29% 1 1 94 
Knap of Reeds Creek off of Brickhouse Rd 25.5 6.84 72% 941 1615 15% 8 2  

Eno River + Little River at Red Mill Road 140 2.92 65% 2202 3635 29% 2 2  
Eno River at Old Oxford Hwy  92.8 4.07 36% 2037 2778 26% 3 1 58 

Little River at Old Oxford Hwy 43.7 5.41 44% 1275 1837 17% 6 2   
Little River at Vintage Hill Pkwy 43.7 7.72 51% 1821 2742 24% 4 2  

Ellerbe  Creek at Red Mill Road 41.0 6.42 39% 1420 1970 19% 5 2  
Ellerbe  Creek at Glenn Road 41.0 5.33 31% 1178 1546 15% 7 1 125 

Unnamed Tributary to Falls  at Northside Road 2.06 6.30 54% 70.0 108 1.1% 21 2   
Panther Creek at Cooksbury Drive 1.94 15.4 42% 161 228 2.3% 16 2   
Panther Creek at Burton Road 1.94 14.4 42% 150 213 2.1% 17 1 28 

Ledge Creek at Northside Road 14.5 1.97 66% 154 256 2.5% 14 2   
Little Lick Creek at Patterson Road 8.31 14.8 60% 662 1061 10.2% 9 2  
Little Lick Creek at Stallings Road 8.31 15.3 55% 684 1058 10.2% 10 2  

Robertson Creek at Brassfield Road 8.87 1.05 111% 50.4 106 1.1% 22 2   
Beaverdam Creek at Horseshoe Road 8.22 0.91 163% 40.3 106 1.1% 23 2  

Smith Creek at Lawrence Road 6.36 0.71 183% 24.2 68.5 0.7% 26 2   
Lick Creek at Hwy 98 8.17 9.39 48% 414 611 6.0% 12 2  
Lick Creek at Southview Road 8.17 11.7 44% 515 742 7.2% 11 1 21 

New Light Creek at Woodlief Road 10.3 1.57 94% 87.4 169 1.7% 20 2  
New Light Creek at Mangum Dairy Rd 10.3 4.00 37% 222 305 3.0% 13 1 22 

Upper Barton Creek at Mt Vernon Church 4.95 2.70 45% 72.2 104 1.0% 24 2  
Lower Barton Creek at State Rd 1834  6.26 3.70 38% 125 173 1.7% 19 1 20 

Horse Creek at Hwy 98 8.87 2.22 94% 106 205 2.0% 18 2  
Horse Creek at Thompson Mill Rd 8.87 3.58 38% 171 237 2.3% 15 1 20 

Honeycutt Creek at Honeycutt Road 2.94 3.56 56% 56.5 88.2 0.9% 25 2  
1Mean daily flow is the average daily flow for a tributary based on the 10-year average daily flow between 2004 and 2013.  For tributaries that are gaged, the average flow for the most 
downstream gage was applied to the relevant watershed area.  If flow at the most downstream gage is regulated, the remainder of the ungaged watershed area was assigned the 
average ungaged areal flow rate for the basin. For ungaged tributaries, flow was calculated based on basin proration, using the average flow for all unregulated gages. 
2The modeled concentration is the mean concentration expected for an arbitrarily selected date in July 2008.  The selection of the date is unimportant for the task of ranking sites 
because although values change from day to day, the rankings among sites will not.      
3The load index is the product of flow and the expected concentration.  This is an index because it is not representative of the conditions on any specific date nor is it the annual mean.  
It is the product of 10-year average flow conditions for a tributary and the modeled concentration at a given site and time.  This provides a ranking of sites from highest to lowest 
contribution to loading to Falls Lake to be used as one factor in allocating monitoring resources.  
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Table 5-7 Summary of the Lake Loading Locations and their Ranks with Respect to their Expected Load to Falls Lake   

Low values (shaded red) indicate sites with the largest predicted loads and high values (shaded green) indicated locations with 
the lowest predicted loads based on predicted concentrations of water quality parameters and estimated flows for each tributary. 

Tributary Road Crossing Rank, 
TN 

Rank,  
TP 

Rank, 
TSS 

Minimum 
Rank 

Eno River + Little River at Red Mill Road 2 1 2 1 

Flat River at Old Oxford Hwy 4 4 1 1 

Ellerbe  Creek at Glenn Road 1 2 7 1 

Ellerbe  Creek at Red Mill Road 3 3 5 3 

Eno River at Old Oxford Hwy  5 5 3 3 

Little River at Vintage Hill Pkwy 6 7 4 4 

Little River at Old Oxford Hwy 7 8 6 6 

Knap of Reeds Creek off of Brickhouse Road 8 6 8 6 

Little Lick Creek at Stallings Road 10 9 10 9 

Little Lick Creek at Patterson Road 13 11 9 9 

Upper Barton Creek at Mt Vernon Church Road 9 18 24 9 

Ledge Creek at Northside Road 14 10 14 10 

Lick Creek at Southview Road 15 16 11 11 

Lower Barton Creek at State Rd 1834  11 22 19 11 

Lick Creek at Hwy 98 12 13 12 12 

New Light Creek at Mangum Dairy Road 16 12 13 12 

New Light Creek at Woodlief Road 18 14 20 14 

Horse Creek at Thompson Mill Road 17 20 15 15 

Robertson Creek at Brassfield Road 19 15 22 15 

Panther Creek at end of Cooksbury Drive 23 25 16 16 

Beaverdam Creek at Horseshoe Road 21 17 23 17 

Panther Creek at Burton Road 24 26 17 17 

Horse Creek at Hwy 98 20 19 18 18 

Unnamed Tributary to Falls Lake at Northside Road 25 24 21 21 

Smith Creek at Lawrence Road 26 21 26 21 

Honeycutt Creek at Honeycutt Road 22 23 25 22 
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Table 5-8 Modeled TN Concentrations at Potential Jurisdictional Boundary Monitoring Sites along with an Index of the Total Load 
at each Location 

The “proportion of total load from tributary” indicates the load at the given location as a percentage of the sum of the loads from all 
tributary loading sites to Falls Lake to provide a reference.  Cells highlighted in red indicate the highest 33% of sites and those in 
green the lowest 33%.   

Tributary Jurisdictional Boundary 
Tributary 
Flow 
(mean 
daily, cfs) 

Modeled TN 
Concentration 
(mg/L) 

Relative 
Error of 
Mean 

Load 
Index 
(lb/day) 

Load Index 
Upper 
Confidence 
Limit 

Proportion 
of Total 
Load from 
Tributary 

Rank,  
Load 
Upper 
CI 

Model n 

Eno River upstream of Hillsborough 36.3 0.91 20% 178 214 11.1% 7 2  

Eno River downstream of Hillsborough 40.5 1.57 22% 342 416 21.6% 2 1 26 

Eno River downstream of Orange County 69.1 0.69 20% 256 305 15.9% 5 1 24 

Eno River downstream of City of Durham 92.8 0.67 12% 334 374 19.4% 4 1 113 

North Fork Little River downstream of Orange County 13.2 1.25 40% 88.6 124 6.44% 10 2  

South Fork Little River downstream of Orange County 22.5 1.44 38% 174 241 12.5% 6 2  

Little River upstream of City of Durham 50.5 0.68 11% 185 205 10.7% 9 1 137 

Little River downstream of City of Durham 43.6 0.77 17% 181 211 11.0% 8 2  

Flat River downstream of Person County 61.4 0.83 47% 274 404 21.0% 3 2  

Deep Creek downstream of Person County 19.3 0.62 52% 64.0 97.0 5.04% 11 1 3 

Camp Creek downstream of Durham County 2.99 0.34 125% 5.49 12.4 0.64% 13 2  

Little Ledge Creek downstream of Granville County 2.24 0.71 22% 8.56 10.5 0.54% 14 2  

Ledge Creek downstream of Stem 1.08 0.22 116% 1.27 2.75 0.14% 19 2  

Ledge Creek upstream of Butner 2.10 0.24 50% 2.75 4.13 0.21% 17 2  

Robertson Creek upstream of Creedmoor 2.66 0.19 64% 2.65 4.35 0.23% 16 2  

Buckhorn Creek downstream of Granville County 0.73 0.15 58% 0.60 0.96 0.05% 21 2  

New Light Creek downstream of Granville County 5.94 0.14 68% 4.60 7.74 0.40% 15 2  

Horse Creek downstream of Franklin County 2.87 0.05 150% 0.77 1.93 0.10% 20 2  

Horse Creek upstream of Wake Forest 4.27 0.07 128% 1.55 3.53 0.18% 18 2  

Horse Creek downstream of Wake Forest 7.14 0.52 19% 19.89 23.76 1.23% 12 1 20 

Ellerbe  Creek downstream of City of Durham 39.5 3.29 11% 701 776 40.3% 1 1 214 
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Table 5-9 Modeled TP Concentrations at Potential Jurisdictional Boundary Monitoring Sites along with an Index of the Total Load 
at each Location 

The “proportion of total load from tributary” indicates the load at the given location as a percentage of the sum of the loads from all 
tributary loading sites to Falls Lake to provide a reference.  Cells highlighted in red indicate the highest 33% of sites and those in 
green the lowest 33%.   

Tributary Jurisdictional Boundary 
Tributary 
Flow 
(mean 
daily, cfs) 

Modeled TP 
Concentration 
(mg/L) 

Relative 
Error of 
Mean 

Load 
Index 
(lb/day) 

Load Index 
Upper 
Confidence 
Limit 

Proportion 
of Total 
Load from 
Tributary 

Rank,  
Load 
Upper 
CI 

Model n 

Eno River upstream of Hillsborough 36.3 0.04 30% 8.44 11.0 9.20% 10 2  

Eno River downstream of Hillsborough 40.5 0.08 33% 17.6 23.5 19.7% 3 1 26 

Eno River downstream of Orange County 69.1 0.05 30% 16.9 22.0 18.4% 4 1 24 

Eno River downstream of City of Durham 92.8 0.03 17% 16.9 19.8 16.6% 6 1 118 

North Fork Little River downstream of Orange County 13.2 0.12 54% 8.26 12.7 10.6% 7 2   

South Fork Little River downstream of Orange County 22.5 0.14 47% 16.5 24.3 20.3% 2 2   

Little River upstream of City of Durham 50.5 0.04 15% 10.2 11.7 9.78% 8 1 167 

Little River downstream of City of Durham 43.6 0.04 21% 9.63 11.6 9.72% 9 2   

Flat River downstream of Person County 61.4 0.04 74% 12.4 21.6 18.1% 5 2  

Deep Creek downstream of Person County 19.3 0.02 87% 2.58 4.82 4.04% 11 1 3 

Camp Creek downstream of Durham County 2.99 0.13 75% 2.16 3.78 3.16% 12 2  

Little Ledge Creek downstream of Granville County 2.24 0.07 42% 0.86 1.23 1.03% 19 2  

Ledge Creek downstream of Stem 1.08 0.24 63% 1.41 2.30 1.93% 13 2   

Ledge Creek upstream of Butner 2.10 0.10 45% 1.10 1.59 1.33% 16 2  

Robertson Creek upstream of Creedmoor 2.66 0.03 90% 0.42 0.79 0.66% 20 2  

Buckhorn Creek downstream of Granville County 0.73 0.05 64% 0.18 0.30 0.25% 21 2  

New Light Creek downstream of Granville County 5.94 0.03 69% 0.85 1.44 1.20% 17 2  

Horse Creek downstream of Franklin County 2.87 0.04 152% 0.56 1.42 1.19% 18 2   

Horse Creek upstream of Wake Forest 4.27 0.03 124% 0.80 1.79 1.50% 15 2  

Horse Creek downstream of Wake Forest 7.14 0.04 30% 1.47 1.91 1.60% 14 1 20 

Ellerbe  Creek downstream of City of Durham 39.5 0.18 15% 37.5 43.0 36.0% 1 1 217 



Water Quality Estimation and Monitoring Optimization 
UNRBA Monitoring Program Development and Implementation  

April 25, 2014  Cardno ENTRIX Determination of Monitoring Frequency for Existing and Proposed Monitoring Locations 5-17 
 

Table 5-10 Modeled TSS Concentrations at Potential Jurisdictional Boundary Monitoring Sites along with an Index of the Total Load 
at each Location 

The “proportion of total load from tributary” indicates the load at the given location as a percentage of the sum of the loads from all 
tributary loading sites to Falls Lake to provide a reference.  Cells highlighted in red indicate the highest 33% of sites and those in 
green the lowest 33%.   

Tributary Jurisdictional Boundary 
Tributary 
Flow 
(mean 
daily, cfs) 

Modeled TSS 
Concentration 
(mg/L) 

Relative 
Error of 
Mean 

Load 
Index 
(lb/day) 

Load Index 
Upper 
Confidence 
Limit 

Proportion 
of Total 
Load from 
Tributary 

Rank,  
Load 
Upper 
CI 

Model n 

Eno River upstream of Hillsborough 36.3 4.54 52% 890. 1352 13.5% 8 2  

Eno River downstream of Hillsborough 40.5 4.00 48% 874 1291 12.9% 9 1 26 

Eno River downstream of Orange County 69.1 3.37 44% 1255 1804 18.0% 5 1 24 

Eno River downstream of City of Durham 92.8 4.07 36% 2038 2779 27.8% 2 1 58 

North Fork Little River downstream of Orange County 13.2 13.3 108% 942 1956 19.5% 3 2  

South Fork Little River downstream of Orange County 22.5 13.7 98% 1661 3296 32.9% 1 2  

Little River upstream of City of Durham 50.5 4.62 32% 1257 1655 16.5% 6 1 115 

Little River downstream of City of Durham 43.6 5.41 44% 1270 1831 18.3% 4 2  

Flat River downstream of Person County 61.4 1.75 55% 578 897 8.95% 10 2  

Deep Creek downstream of Person County 19.3 1.99 79% 207 371 3.70% 11 2  

Camp Creek downstream of Durham County 2.99 2.44 324% 39.4 167 1.67% 13 2  

Little Ledge Creek downstream of Granville County 2.24 3.91 47% 47.4 69.5 0.69% 16 2  

Ledge Creek downstream of Stem 1.08 1.08 344% 6.29 27.9 0.28% 19 2  

Ledge Creek upstream of Butner 2.10 1.05 113% 11.9 25.4 0.25% 20 2  

Robertson Creek upstream of Creedmoor 2.66 0.91 114% 13.1 28.0 0.28% 18 2  

Buckhorn Creek downstream of Granville County 0.73 1.16 108% 4.54 9.44 0.09% 21 2  

New Light Creek downstream of Granville County 5.94 1.14 108% 36.6 76.2 0.76% 14 2  

Horse Creek downstream of Franklin County 2.87 0.72 322% 11.2 47.1 0.47% 17 2  

Horse Creek upstream of Wake Forest 4.27 0.96 242% 22.2 75.8 0.76% 15 2  

Horse Creek downstream of Wake Forest 7.14 3.58 38% 138 191 1.90% 12 1 20 

Ellerbe  Creek downstream of City of Durham 39.5 5.33 31% 1135 1489 14.9% 7 1 125 
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Table 5-11 Summary of the Jurisdictional Boundary Locations and their Ranks with Respect to their Expected Load of TN, TP, and 
TSS 

Low values (shaded red) indicate sites with the largest predicted loads and high values (shaded green) indicated locations with 
the lowest predicted loads based on predicted concentrations of water quality parameters and flow values for each tributary. 

Tributary Jurisdictional Boundary Rank, TN Rank, TP Rank, 
TSS 

Rank, 
Minimum 

Ellerbe  Creek downstream of City of Durham 1 1 7 1 

South Fork Little River downstream of Orange County 9 2 1 1 

Eno River downstream of City of Durham 3 6 2 2 

Eno River downstream of Hillsborough 2 3 9 2 

North Fork Little River downstream of Orange County 10 7 3 3 

Eno River downstream of Orange County 5 4 5 4 

Flat River downstream of Person County 4 5 10 4 

Little River downstream of City of Durham 7 9 4 4 

Little River upstream of City of Durham 6 8 6 6 

Eno River upstream of Hillsborough 8 10 8 8 

Deep Creek downstream of Person County 11 11 11 11 

Horse Creek downstream of Wake Forest 12 14 12 12 

Camp Creek downstream of Durham County 14 12 13 12 

Little Ledge Creek downstream of Granville County 13 19 16 13 

Ledge Creek downstream of Stem 19 13 19 13 

New Light Creek downstream of Granville County 15 17 14 14 

Horse Creek upstream of Wake Forest 18 15 15 15 

Ledge Creek upstream of Butner 16 16 20 16 

Robertson Creek upstream of Creedmoor 17 20 18 17 

Horse Creek downstream of Franklin County 20 18 17 17 

Buckhorn Creek downstream of Granville County 21 21 21 21 
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The models cannot tell us what an “acceptable” level of error is. They do tell us that the confidence 
interval for model predictions decreases with each additional sample, but they also tell us that the 
decreases in CI from each additional sample relative to previous samples exhibit diminishing returns 
(Table 5-1).  Sampling hourly may increase confidence in model predictions, but the gain may not be 
large compared to a daily sampling frequency. Ideally, the models would identify the sampling frequency 
at which the gain in confidence in model output is just offset by a lack of response from the EFDC model 
output.  However, such an analysis is precluded by a lack of confidence in the current calibration of the 
EFDC model as well as the computational and analytical time required for the hundreds or thousands of 
EFDC simulations necessary for such an optimization procedure. Determining an “acceptable” degree of 
error can be informed by the models presented in this memo but ultimately it will need to be decided with 
budgetary constraints, trade-offs with respect to other monitoring objectives, and political consequences 
in mind. 

The results of the water quality models (in combination with previous EFDC sensitivity analyses) can be 
used to identify plausible sampling plans which focus effort on the tributary locations that benefit most 
from increased sampling frequency.  Modeled loads from the upper lake tributaries (Flat River, Eno River, 
Little River, Ellerbe Creek, and Knap of Reeds Creek) provide the largest contribution of nutrients to the 
lake and also drive much of the EFDC sensitivity. Increasing confidence in estimates of nutrient, carbon, 
sediment, and chlorophyll loading from these tributaries would contribute substantially to confidence in the 
estimates of total load to the lake.  The models show that roughly weekly sampling for 5 years would yield 
enough samples to allow models to predict daily mean values with a relative error of 10% and 90% 
confidence for TP (n=260) and sampling twice monthly would provide a similar level of confidence for TN 
estimates (n=120).  Sampling TSS weekly would not achieve the 10% relative error, but would achieve a 
relative error between 10 and 20%. Obtaining this level of confidence for the five largest contributors of 
nutrients to Falls Lake while sampling other sites less frequently may be a useful way to balance 
budgetary concerns with desired confidence in lake loading estimates.   

Based on the analyses above, a discussion of recommended sampling frequencies for both lake loading 
and jurisdictional boundary locations is presented in the final section of this TM (Section 6).  
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6 Recommendations for Monitoring Program Design 
for Watershed Sampling Sites 

6.1 Recommended Lake Loading Monitoring Locations and Sampling 
Frequency  

Potential monitoring locations for lake loading sites have been identified based on ease of access (usually 
at road crossings where samples could be obtained either by sampling from a bridge or, if necessary, 
from the streambank) and proximity to the lake; these locations are shown in Figure 6.1. For some 
tributaries, two sites have been identified as potential locations for lake loading monitoring:  an upstream 
site based on an existing (or past) monitoring station and a site at a road crossing further downstream. 
The advantages of the downstream locations are that they cover a larger drainage area and thus may be 
more representative of the true tributary loading. We have chosen these downstream sites to be at 
locations outside of the flood zone of Falls Lake based on site elevation, however there may be other site-
specific reasons that existing monitoring entities have chosen the upstream sites. We will discuss these 
sites with local experts to obtain feedback on their feasibility before making a final recommendation to the 
UNRBA. 

Parameters recommended for inclusion in the monitoring program are listed in table 6-1 and include 
routine field parameters to characterize the chemistry and biology of the streams as well as lab analyses 
for nutrients, sediment, and carbon.  Parameter selection will be explored further in the upcoming Five-
Year Monitoring Plan TM; this table is presented here to provide context for the monitoring plan and cost 
estimates.  

Table 6-1 Parameters Recommended for Routine Sampling at Lake Loading Locations 

Parameters Description 

Temperature, dissolved oxygen, pH, conductivity Field parameters for stream characterization 

Ammonia, nitrate plus nitrite, total Kjeldahl nitrogen Nitrogen species for estimating tributary loading 

Ortho-phosphorus and total phosphorous Phosphorus species for estimating tributary loading 

Total suspended solids Sediment delivery to Falls Lake 

Total organic carbon and dissolved organic carbon Characterize carbon loading to Falls Lake  

Color and UV absorbance Indicators of carbon content and source 

Chlorophyll a Measure loading of chlorophyll from tributaries to Falls 
Lake 

Carbonaceous Biochemical Oxygen Demand (CBOD5) Used to partition labile versus refractory forms of carbon 
and nutrients, necessary for EFDC model input 

 

In total, there are 17 tributary loading sites which are included in the Falls Lake Nutrient Response Model 
for which estimates of nutrient, chlorophyll, and sediment load are required. If the Eno and Little Rivers 
are monitored separately, there would be a total of 18 monitoring locations for the purposes of measuring 
loading to Falls Lake. There is a possibility that monitoring could occur on the Eno River at Red Mill Road 
which is downstream from the confluence with the Little River which could reduce the number of locations 
to 17; however, monitoring these rivers separately would facilitate multiple uses of the data including 
source allocation, watershed modeling, and BMP prioritization among others. Because of these reasons, 
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member jurisdictions have requested (and Cardno ENTRIX recommends) that these rivers be monitored 
separately.  

Given a desire to include monitoring at all input tributaries to Falls Lake, a sampling plan uninformed by 
the model results presented in this TM might include a constant monitoring frequency across all 18 
locations.  Monthly sampling for all 18 tributaries is estimated to cost roughly $160,000 per year 
(excluding costs of data and project management), but may not sample the largest tributaries frequently 
enough to narrow the confidence intervals to desired levels. Monthly sampling over 4 years would result 
in 48 samples per site which corresponds to relative errors of between 30 and 40% for TSS, between 20 
and 30% for TP, and between 10 and 20% for TN (Table 5.2).  Sampling weekly, however, (208 samples 
over four years) might reduce the relative error of model simulated data to roughly 10% for TN and TP 
and to less than 20% for TSS, but the cost at nearly $700,000 per year would be prohibitive.  Using model 
output, we can distinguish among the 18 tributary locations to identify locations where increased sampling 
would provide the most value. The largest five tributaries account for over 80% of the total predicted load 
of TN and over 75% of the predicted load of TP. Sampling these five tributaries weekly for four years 
would reduce the relative error of model predictions to roughly 10% for TN and TP and less than 20% for 
TSS. Thus, increasing sampling frequency at just five locations can yield more precise estimates for 75 to 
80% of the total nutrient load. Of these five locations, Flat River and Eno River have on the order of 100 
data points for TN and TP already, and Ellerbe Creek has roughly 200 data points for each, although less 
than half of these are for the period after the waste water treatment plant upgrades.  Taking advantage of 
the data already available at these sites would reduce the sampling frequency required to achieve a 10% 
relative error on the predictions to twice monthly.  The SGWASA waste water treatment plant is 
undergoing upgrades which mean the historical data will not be informative of future loads; sampling 
Knap of Reeds creek twice monthly over four years would provide nearly 100 samples which would 
produce estimates with 10% relative error for TN and between 10 and 20% relative error for TP.   

The smallest 6 tributaries contribute just 2% of the modeled TN and about 6% of the modeled TP load to 
Falls Lake. Reducing sampling frequency at these locations can allow monitoring dollars to be allocated 
elsewhere while reducing precision on model estimates of load for only a small fraction of the total lake 
loading. These sites are candidates for monthly monitoring for approximately a year to verify model 
predictions (especially at sites which have not previously been sampled) followed by reduced sampling in 
subsequent years to free up sampling funds for short-term studies as directed by the UNRBA. 
Recommended sampling frequencies are summarized in Table 6-2.  The estimated cost of this monitoring 
scenario is approximately $220,000 per year (excluding the costs of data and project management). This 
is a rough estimate only to determine that the selected frequencies are within the limits of the projected 
monitoring budget.  
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Table 6-2 Tributary Locations for Lake Loading Monitoring and Recommended Sampling Frequency for the First Year of 
Monitoring 

Three tributaries have two sites listed.  Only one of each of these pairs will be monitored and the final site determination will be 
made based upon field visits of the sites. 

 
Waterbody Road Crossing Latitude Longitude 

Drainage 
Area 
(mi2) 

Recommended 
Frequency 

1 Knap of Reeds Creek access off of Brickhouse Rd 36.118226 -78.798476 44.7 Every other week 

2 Flat River at Old Oxford Hwy 36.131900 -78.827981 169 Every other week 

3 Little River at Old Oxford Road 36.081667 -78.854722 104 Every other week 

4 Eno River at Old Oxford Hwy 36.072642 -78.862700 149 Every other week 

5 Ellerbe  Creek at Glenn Rd 36.059583 -78.832200 21.9 Every other week 

6 Panther Creek at Burton Rd  36.033593 -78.812568 2.60 Monthly 

7a Little Lick Creek at Patterson Road 36.004633 -78.787502 13.8 Monthly 

7b Little Lick Creek at Stallings Rd 35.986681 -78.799173 10.1 Monthly 

8 Lick Creek at Southview Rd south of Hwy 98 35.977936 -78.749565 10.8 Monthly 

9 Unnamed Tributary at Northside Road 36.084307 -78.748911 3.43 Monthly 

10 Ledge Creek at Northside Road 36.103426 -78.708157 20.9 Monthly 

11 Robertson Creek at Brassfield Road 36.102984 -78.659167 12.0 Monthly 

12 Beaverdam Creek at Horseshoe Road 36.091260 -78.639854 12.7 Monthly 

13 Smith Creek at Lawrence Road 36.088429 -78.602448 6.30 Monthly 

14a New Light Creek at Woodlief Road 36.024974 -78.616262 17.1 Monthly 

14b New Light Creek at Mangum Dairy Rd 36.027012 -78.601325 12.3 Monthly 

15a Horse Creek at Hwy 98 (Durham Road) 35.977288 -78.574052 14.8 Monthly 

15b Horse Creek at Thompson Mill Rd 35.979137 -78.561741 11.9 Monthly 

16 Upper Barton Creek at Mt Vernon Church Road 35.959915 -78.678645 8.26 Monthly 

17 Lower Barton Creek at State Rd 1834 aka Norwood Rd 35.943928 -78.659621 10.4 Monthly 

18 Honeycutt Creek at Honeycutt Road 35.912558 -78.622060 2.76 Monthly 
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6.2 Recommended Jurisdictional Boundary Monitoring Locations and 
Sampling Frequency  

Sampling locations for 21 jurisdictional boundary monitoring were visually identified using GIS stream, 
street, and county and municipal boundary layers and were chosen to be located at road crossings as 
near to the appropriate jurisdictional boundary as possible (Figure 6.1).  The jurisdictional boundary 
locations are listed in Table 6-3 and are displayed on Figure 6.1 Jurisdictions are required to calculate 
annual loads at these locations in order to determine the baseline jurisdictional loads.  However, 
acceptable methods to determine jurisdictional loads have not been provided by the state. Monitoring 
along with models which can predict daily nutrient concentrations can be used together to calculate 
annual loads at these locations. Most of the jurisdictional boundary sites do not have historical data 
available and therefore Cardno ENTRIX recommends sampling all boundary locations monthly in the first 
year to obtain data which can be used to assess model predictions. If sampling continued monthly for four 
years (48 samples), model predictions of TN would be expected to have a relative error between 10 and 
20% and predictions of TP would be expected to have a relative error between 20 and 30%. Some sites 
are expected to have much lower loads than other sites and, for future years, the UNRBA may wish to 
discuss whether all sites, regardless of the magnitude of load need to be predicted with the same level of 
confidence.    
 
Parameters recommended for monitoring at the jurisdictional boundary locations include those listed in 
table 6-1 with the exception of chlorophyll a, dissolved organic carbon, color, and CBOD5. These 
parameters are not necessary at jurisdictional boundary sites, however, depending upon values observed 
at lake loading sites in the first year of monitoring, it is possible (but perhaps not likely) that inclusion of 
these parameters at some jurisdictional boundary sites may indicated in future years.  
 
The cost of monitoring 21 jurisdictional boundary locations monthly is estimated to be nearly $150,000 per 
year in field and lab analysis costs only.  Depending upon the final selection of lake loading monitoring 
locations, one or two of the 21 jurisdictional boundary locations may be included as lake loading locations, 
thus slightly reducing this estimated cost. Based upon preliminary feedback from the Path Forward 
Committee of the UNRBA, this monitoring frequency may be reduced in the final monitoring plan to 
between quarterly and monthly for the first year. 
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Table 6-3 Tributary Sampling Locations for Jurisdictional Boundary Monitoring  

 

Waterbody Road Crossing Boundary Latitude Longitude 
Drainage  
Area (mi2) 

1 Eno River at Dimmocks Mill Road upstream of Hillsborough 36.070127 -79.129530 60.5 

2 Eno River  at Hwy 70 and Riverside Drive downstream of Hillsborough 36.075417 -79.071636 73.2 

3 Eno River at Cole Mill Road downstream of Orange County 36.059290 -78.978042 121 

4 North Fork Little River at New Sharon Church Road between Orange and Durham Counties 36.180164 -78.975432 21.9 

5 South Fork Little River at Guess Road (Hwy 157) between Orange and Durham Counties 36.145465 -78.962187 37.4 

6 Little River at Johnson Mill Rd upstream of City of Durham 36.141643 -78.919265 78.3 

7 North Flat River at Highway 57 downstream of Roxboro 36.310638 -78.969420 15.8 

8 North Flat River at Helena-Moriah Road before confluence with South Flat 36.288983 -78.942891 32.8 

9 South Flat River at Highway 57 before confluence with North Flat River 36.256842 -78.944337 54.4 

10 Flat River at Moores Mill Rd downstream of Person county 36.241864 -78.905769 102 

11 Deep Creek at Smith Rd downstream of Person County 36.240278 -78.888885 32.1 

12 Camp Creek at Camp Butner between Durham and Granville Counties 36.209510 -78.805304 4.99 

13 Little Ledge Creek at Old Weaver Trail downstream of Granville 36.075904 -78.720953 3.74 

14 Ledge Creek at Old Route 75 downstream of Stem 36.194856 -78.729220 1.79 

15 Ledge Creek at W Lyon Station Rd upstream of Butner 36.176079 -78.714097 3.49 

16 Robertson Creek at Sam Moss Hayes Road upstream of Creedmoor 36.139193 -78.660785 4.43 

17 Buckhorn Creek at Buckhorn Lane between Granville and Wake Counties 36.048080 -78.609717 1.21 

18 New Light Creek at Bold Run Hill Road between Granville and Wake Counties 36.037485 -78.592078 9.90 

19 Horse Creek at Holden Road between Franklin and Wake Counties 36.024301 -78.518988 4.78 

20 Horse Creek at Purnell Road upstream of Wake Forest 36.007058 -78.529087 7.11 

21 Horse Creek at Thompson Mill Rd downstream of Wake Forest 35.979137 -78.561741 11.9 
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Figure 6-1 Potential Monitoring Locations
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